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REPORT No. 323

FLOW AND FORCE EQUATIONS FOR A BODY REVOLVING IN A FLUID

IN FIVE PARTS

By A. F. ZAHM

SUMMARY

This report, submitted to the National Advisory Committee/or Aeronautics/or publication, is

a slightly revised.form of U. S. Navy Aerodynamical Laboratory Report 5"0. 380, completed/or the

Bureau of Aeronautics in November, 1928. The diagrams and tables were prepared by Mr. F. A.

Louden; the measurements given in Tables 9 to 1.1 were made for this paper by Mr. R. H. Smith,

both members of the Aeronautics Staff.

Part I gives a general method for finding the steady-flow velocity relative to a body in plane

cllrvilinear motion, whence the pressure is.found by Bernoulli's energy principle. Integration of

tl, e pressure supplies basic.formulas.for the zonal.forces and moments on the revolving body.

Part II, applying this steady-flow method, finds the velocity and pressure at all points of the

flox inside and outside an ellipsoid and some of its limiting.forms, and graphs those quantities/or

ttte latter .forms. In some useful cases experimental pressures are plotted .for comparison with

t]_eoretical.

Part III finds the pressure, and thence the zonal.force and moment, on hulls in plane curvi-

liJ_ear flight.

Part IV derives general equations.for the resultant fluid.forces and moments on trisymmetrical

bodies moving through a perfect fluid, and in some cases compares the moment values with those

[olLnd .for bodies moving in air.

Part V furnishes ready.formulas.for potential coe.ficients and inertia coeficients .for an ellipsoid

_,d its limiting.forms. Thence are derived tables giving numerical values of those coejficients for

a comprehensive range of shapes.
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FLOW AND FORCE EQUATIONS FOR A BODY REVOLVING IN A FLUID

PART I

INTRODUCTION

STEADY-FLOW _IETHOD.--In some few known cases one can compute the absolute particle

velocity q' at any point (x, y, z) of the flow caused by the rotation of a body, say with uniform

angular speed l], in an infinite inviscid liquid otherwise still. Thence, since q' is unsteady at

[x, y, z), the instantaneous pressure there is found by Kelvin's formula Pv/p = -b_/5t-q'2/2, Pv

being the supervacuo pressure there, and _ the velocity potential.

Otherwise superposing upon said body and flow field the reverse speed - l_, about the same

axis, gives the same relative velocity q but which now is everywhere a steady space velocity.

In the body's absence the circular flow speed at the radial distance R would be q0= - fiR. 1 If

the fixed body's presence lowers the speed at (x, y, z) from qo to q, it obviously begets there the

superstream pressure

1 *., o

p=_p(qo'-q ") ................................. (1)

or in dimerrsionless form, a being some fixed length in the body,

p R _
1pa)Z__ = a -)( l -- q+-/qo+")............................. (1,)2

The present text finds p by this steady-flow metimd only, and applies it to streams about various

forms of the ellipsoid and its derivatives.

The superposed circular flow, qo = -.qR = -be/OR, has the stream-function

¢ = I.QR2 .................................. (2)

which, for rotation about the z axis, plots as in Figure 4. This flow has no velocity potential,

since b¢/bR#O.

GENERAL FORMULAS FOR VELOCITY COMPONENTS.--In plane flow, 3 as is known, a particl('

at any point (x, y) of a line s drawn in the fluid has the tangential and normal velocity com-

ponents

b_ b¢, be be !:_,
q'= Os=-ha ft_-&_-bs ...................

I This velocity entails the centrifugal pressure poffipg_:R:¢'2 at all distances, R ffi ,,:z*A-y: from the rotation axis of the circular stream, here assumed

to be constrained by a coaxial clo_od cylinder infinitely large. To the dynamic pressure p,+p may also be added any arbitrary static pressure

such as that duo to weight or other impressed force.

: At any surface point of the body q is the velocity of wash or slip, whether the body moves or not; it is q'_--q"t, the difference of the tangc:_tial

space velocities of the fluid and surface point. If the body is flied q"t =0, q =q't.

i Plane flow, viz two-dimensional flow, ]itarally means flow in a plane; tile term applies also to apace flow that is the same in all parallel i_Lmes.
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where _s, 6n are elements along the line and its normal. As usual, q,, q. are reckoned positive
respectively along _s, 5n positive; e. g. Figure 2. The components alongx, y are

b_ 5¢_ be be q,
U=sx=Sy V=Oy= Ox ............. (4)

In solid flow (3), (4) still hold for _, and further w=b_/bz. In ;_--. _'_ ¢9,,

=_2+_ 2 At any point of a surface drawn in thegeneral, q2=u2+_+w 2 ,l_ _a.

fluid q t is taken in the plane of q and q,. All these velocities are referred /rr
to fixed space. /

SURFACE VELOCITY.--A fixed body in any stream, since q,=0, has
the surface flow velocity q=qt, which put in (1) determines the surface

pressure, t_
At any surface point of an immersed moving body q, is the same for

body and fluid, hence is known from solid kinematics. Thus, if the body r'm_ 1.--Component veloci
ties q., qt of stzrt'ace point of

is any cylinder rotating as in Figure 1, any rigid cylinder having an-

gular speed f] about any axis

q,=-.qRdR/ds=_tRsin (O-_)=_h_=_(mx-ly) ....... (5) p_rallelto its l_ngth q.=
llhx; Ct=_h_. h,=R sin (0-
B)=-R dRMs=mx-lg, l, m

where the symbols are as defined in Figures 1, 2. heinedirectioncasinesof the
More generally, for any surface with velocities .%, _, _, about the normaltotheeontourelement

dse.t (.I,y). Ifthebody rotates
axes x, y, z, in a fluid,q.=o¢/o,=o¢/on.

At any surface point q. is the

q, = (ny-mz)_ + (lz- nx).% + (rex- ly)_ ........... (6) =me tot ,o_y a_d ,_i< q,
differetlt except at points of no

where l, m, n are the direction cosines of tile surface normal, as in (13_). _lipp_e

If at the same time the body has translation components, U, V, W along x, y, z, (6) must be
increased by l U+ m V+ n W, giving

y

q, = l( U + zP._ - y_) + m ( V+ x_- z_) + n ( W + y_- x.q_) __ (7)

_,/__ _ But (5), (6), (7) express q, only at the model's surface.

Equations (1) to (7) obtain whether the fluid is inside or out-

side the body.
b ZONAL FORCES AND MOMENTs.--For any cylinder spinning

s about z, as in Figure 1 or 5, surface integration of p gives, per

unit of z-wise length, the zonaD forces and moment, respectively,

_/ a a' X= f p dy Y= f p dx N= f p r dr ..... (8)

r',_u_.--Oeometric Uataforcon/ocal where p dy, p dx are the x, y components of the elementary
elliwes.... ' co_ .... e _; r=b' sin surface force p d.¢, and r is the radius vector of (x, y). To derive

b t a s

,=, _i, _; a ta. e=tan ,-_ tan _= N we note that. p ds has components p r d/_, p dr along and across

¥, n,=_sin(o-_); n,=r cos (_-_). r. Having no moment, p r dO can be ignored, leaving only p
..... ' ¢, ,-_ beingeccen- dr with arm r. Thus, 2N= fp d(r_), which varies as the area of

tricityofab the graph of p versus r_.

A surface of rotation about x, spinning about its z axis, has zonal forces

X= f f p dy dz Y= f f p d_c dz .................. (9)

A zone i_ any part of the surface bounded by two parallel planes; in this text they are assumed normal to x, and the zone has tile bounditlg

planes x=0, x=_xt; in Part Ill other planes are ased; e. g. x=x_. z=a.
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If ds,, ds_ are dements of its lines of meridian and latitude, as in Figure 3, the moment about
z of p ds, ds_ is p r dr ds_ in the plane _=0, and p r dr dso, cos oJ=p r dr dz=dN for any
meridian plane; hence tile zonal moment is

N= fPr d r ........... (10)

f'where P= z0p dz = dY/dz, is the y-wise pressure-force per unit length x-wise? Thus, as for

(8), N varies as the area of the graph of P versus r2. Also one notes that

f0 rY=fPdx P=zo p coso_ d¢o................ (10,)

Since p is symmetrical about the x axis, Z = 0 = Y= L = M-- N; viz, the assumed zone is
not urged along y, z or about x, y, z. In general, X is not zero for such a zone, but is zero for

FIOURZ 3.--Geometric data for prolato spheroid, z=a cos

_1, y_b Sill vl cos _=r sitt_ cos _; z=b sin _1 Sill _o_r sill

sin w; R=_IzZ-t-V_. _ n is positive outward; _ s,_,

_sw positive as indicated by arrows; z0ffiy0=b sin

For any s_rface S, clearly (9) still

the whole model. The zonal Y, N are zero for steady
rotation about z in a frictionless liquid, because p is

symmet.rieal about the x axis; but are not so in a viscid
fluid, nor for accelerated spin in a perfect fluid.

For trisymmetrieal surfaces we note also: If the
zones were formed by planes normal t.o z, zonal X
would be zero for motion about z; zonal N in general
not zero; e. g., for a viscid fluid. Similarly for zone_
with faces normal to y.

By (10) the bending moment about the z ordinate

f;in the planey=0is P r dr. This is zero for a fric-
l

tionless liquid; for a viscid fluid it increases with length
of zone.

In addition to tim pressure forces and moments just
considered, due to rotation about z, a viscid fluid exerts

surface friction symmetrical about the z axis, but not
treated here.

holds and (10) can be generalized to the usual form

N= f f _o(xdz- ydy)dz ......................... (10D

GEOMETRICAL FORMULAS.--Most of the surfaces treated in this text are members of the

confocal ellipsoid family

x 2 y2 z2 - x2 Y" z2 (11 )
a2-+_ + bZ+_ + d + X= 1 -a,2 + b-,:Z+c,_ ...............

whose semi axes are a'= _/a2+ X, etc. The following known properties are needed.
The distance front the center to the tangent plane at the point (x, y, z) of a'b'c' is

h2= \ai_//x2+ b"Y2+ c"Z_)-_ ............................ (12)

The direction-cosines of the normal to said plane are

h_z h_y h2z
l, m, n= a,_, b-,2, _7-2......................... (13)

The radius of the latitude circle is denoted by z0=y0.
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Tile partial derivatives of _ are

b),=2lh ° _)_, bk bX
_=2nh_ _=2h:_ _ ............. (14)bx " by =2rah2

More generally for any surface /(x, y, z)= 0, one "knows

l =3bx m =3@ n =3bz J = + b + \bz/J .........

and the distance from the origin to the tangent plane at (x, y, z) is

h2=lx+rny+nz=r cos 3"........................... (12)

-_.being the angle between the radius vector r and the normal.
CO:_'VENTIONS.--In all the text x, y, z have the positive directions shown in Figure 3,

as also have thex, y, z corn- y
ponents of velocity, accelera-
tion, force, linear momentum.
The angular components
about x, y, z of velocity, ac-
(_,lcration, moment, momen-
tum are positive in the re-
si)e_.tive directions y to z, z
t,) x, x to y. The positive
direction of a plane closed
contour s is that followed

by one going round it with

tiw inclosure on his left, as x

in Figure 2; the positive 1 9Ri, wish incr_ments:A ¢=.2, for fluid rotating witi_ unilorrr
direction of the normal n FIGURE4.--Streamlinesfor ¢-y

angular velocity i]=--I

is from left to right across s;
and 5s, 5n determine the positive directions of the tangential and normal flow velocities q,
q,, as previously stated. For a closed surface _r, is positive outward and _s is positive
in the direction of one walking on the outer surface with n on his left.

The word "displaced fluid," used in treating the motion of a submerged body, usually
means fluid that would just replace the body if the latter were removed.
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PART H

VELOCITY AND PRESSURE

(A) BODIES IN SIMPLE ROTATION

ELLIPTIC CYLINDER.--For an endless elliptic cylinder, of semiaxes a, b, c (= co), rotating

about c with angular speed fQ in an infinite inviscid liquid, otherwise still, one knows 1

1 ..... 1 , ,-, 27 .......... (15)
_= -m'c_y = -_m c_t,a o sin 27/ _= -_m c_a b cos _

S

V

Q Q,t

1

FIOVRZ &--Streamlines for endless elliptic cylinder rotating about its long axis with uniform angular velocity fl; shows ¢---2 m', 9 a" b'

1 at--M

cos 2_ with increments h @-.2, t2-1. For inside fluid, tb--_ ai+b2 fl (x_-yO

the geometric symbols being as in Figure 2. For any outer confocal a'b' the potential coefficient
has the constant value

m'_ = (a+ b)_(a '- b')/2a'b'(a' _- b') ....................... (16) 2

On the model's surface a' = a, b' = b; m'_ = (a 2- b2)/2ab.

The equipotential lines on either surface ab or a'b' are its intersections with the corre-

sponding family of hyperbolic cylinders xy=-_/m%q=const. Normal to the equipotentials

are the streamlines ¢ = const. Graphs for ¢ = 0, 0.2, 0.4, etc., are shown in Figure 5 for a model

having a/b =4. They are instantaneous streamlines, and form with the model a constant

pattern in uniform rotation about c in said infinite liquid.

At any outer confocal a'b' the velocity components are, if _= m%a'b'P.,

b_ d_ q, be d,7_
q"=_)s= -K cos 27 ds _=bs=K sin 2v _---q', tan2_ ........... (17)

Proofs of (15), (23), (29), (40) are found in books; e. g., Lamb §§ 72, 106, 110, 115, 5th ed., except that Lamb reverses the sign of _, _.

(e' e'+-41-o_' e'!
J Equivalent to (16) is m',= \7 e+_/l_-:/ 2_/1--e:' e, e' being the eccentricities of ab, a'b'. On ab this becomes m',fe_/-_l--e i. See ,:_9)

for the six potential coefficients me, m_, m,, m%, m%, m',, in the value of ,_ for more general motion.
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_vh('rc dv/ds = 1/a' _/1 - e'2 cos2_, as one easily finds. Alternative to (17) are

q',= -_n'c_2cdsxY = -m'c_2cr cos (0+8) q'_= -q'_ tan 2,7.......... (171)

Thus for n=O, 45 °, 90 ° (17) and (171) give q',/_2c= -m' a'c , o, m'cb'. At the model's surface,
where rn'¢= (a 2- b2)/2ab, (171) become

a 2 -- b 2

q't =- 2a_f_rcos (O+_) q'_=_rsin (0-_) ............... (17_)

the latter being h,%, as in (5).

' 0 =1/_/2, viz, at the stream poles, clearlyx=_t'_'_-, y=b'/_/_,Whereq,= ,orcos

x 2_ y2 = a2e2/2 ................................ (18)

a rectangular hyperbola. (18) is the instantaneous polar streamline, e. g., Figure 5, orthogonal

to all the confocal ellipses. Its asymptotes are y = _:x; its vertices are at x = = ae/a/2; it cuts
_ach cllipse where x/y=a'/b', viz, on the diagonals of the circumscribed rectangle. For an

endle_ thin plate of width 2a the poles are at y = 0, z = _: a/a/-2.
Superposing -_2_ on the body and fluid, and using (2), changes (15) to

¢=1 (r2_ m',a'b' cos 2_)_2........................... (19)

Its graph, with A¢ = 0.2, gives the streamlines in Figure 6 for the flow .% = - 1 round a fixed
cylinder having a/b=4. About the point (0, 1.45) in Figure 6, is a whirl separated from the
outer flow by the streamline ¢_=4.25. This line abuts on the model at the inflow points i, i;
_preads round it and emerges at the outflow points o, 0.3 The streamlines for an endless thin
r('ctangle having b = 0, e = 1, are similar to those of Figure 6, but infinitely crowded at the edges.

The superposed particle velocity-_r contributes to (171)

q",= -_r cos (0-8) = -h2_ q"== -_or sin (0-_) = -h_ ........... (20)

alsoq",=q"ttan (O-_). Adding(17_)and (20)givesthecomponentsq,=q',÷q",q==q',+q"_,

c_f_hc resultant flow velocity at any field point. One notes that (20) are the reverse of q,, q=
ii_ Figure I.

ht particular q,=0 on the fixed model and x, y axes; hence there

r .TIttq/a_=-a [ _cos (0+_)+cos (0-_)] q/qo=m',cos (0+_)+cos (0-8) ..... (21)

Thl_sq'qo=l+m'_onthexaxis; 1-m'¢ on the y axis; andlat co where m'_= 0. Thedashed
lin_, in Figure 6 gives q/a_=- (1-m'_)y/a for points on the y axis; it crosses y at the whirl
CClm,r where q=0, viz, where m',=l. By (16) m'_l for the surface of any model having

ab>_l +-Vr-2; and there is no whirl if a/b<l+ _/2. Figure 7 shows q/a_ for the surface of a

illodcq having a/b = 4, m'c = (a 2- b_)/2ab = 15/8.
Putting q2/q2oof (21) in (1_), where r_/a2= cos_/cos2_3, gives

1 2 2

p/-_pa _2 ,= (1 - [m'¢ cos (0+_3) +cos (0- _)12) cos _ ,_/cos-' _ ............. (22)

whi,.h is graphed in Figure 7 for a model having a/b =4.

integrating p/_pa_'c, as in (8), gives for an inviscid liquid Y=0=N; X#0. Figure 7

dclil_¢,ates X for this case.

The points I, 0 are identical with thos_ in Figure 5; viz, where the slip speed q in (21) is zero; they are called stop points, stagnation points, etc.
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For the surface of an endless flat plate (b =0, c= co) fixed in the stream -P.,, clearly

m':=a/2b and generally r cos (0-fl) =0; hence (21) gives

r

q/ai2c = - 2-b cos (O+fl) = - sin e cos _ cot 2,7 ................... (21,)

which equals - _, 0, 1/2 for n=0 °, 45% 90 ° . The flow resembles that in Figure 6; it has

twin whirls abreast its middle, stop points at x = _- a/_, and infinite velocity at the edges.

Putting in (1,) r=x and qo= -x-% gives the plate's surface pressure

p I1 ^_,_., x _ q2
j -_. .... "=a,.,-a_p._ = (1 -cot 2 27) cos 2 ,7.................... (22,)

¥

q/.a 7"
/

/
/

FIGURZ 0.--Streamlines about endless elliptic cylinder fixed in infinite inviscid liquid rotating about its long axis with uniform angular speed-¢,._;

shows ¢--2 tl (r_--m', a _bJ cos 2,/) with increments A ¢ =.1, f_= --I. Dotted llne portrays z-wise speed on y axis

which equals -1/4, 1/2, - ¢o forx=0, +a/_/72, J:a; viz, for 7=90 °, 45 °, 0, etc.

PROLXTE SFHEROID.--For a prelate spheroid, of scmiaxes a, b, c, rotating about c with

speed _ in an infinite inviscid liquid,

1 , ,-,
,p = - m%2,xy= --_m ,gt,a b sin 2 ,7 cos o0.................... (23)
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(1)

-.'15 -Jo -_z5

i

t

-2iO

-- I.O

/ _ I 7-q
.25 . "

cos TI_

2O

____o

FIGURg 7.--Endless elliptic cylinder fixed in infinite inviseld liquid uniformly rotating &bout it; shows (1) z-wise
11

zonal pre&sur_force, X/2 p a 2t_; (2) surface velocity q/aO and surface pressure, p/_ p
a I ll2. above or below nndis-

turbed local pressure In uniform stream, --fl
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the geometric symbols being as in Figure 3. For any outer confocal spheroid a'b'c' (23) has
the known constant potential coefficient

3 1 +e' e '2
2# log i±d-3-1±e '_

m'c=3 . l+e _ e2 ee'_ .................... (24)
Ze (2-e2) l°gl-e -t_+ 1 -e 2

e, e' being the eccentricities of ab, a'b'. Table IV gives surface values of m'c for various shapes
of prolate spheroid.

In the yz, zx planes _=0; in the xy plane, where cos _= 1

1 v t ! 1 t I-t

_o=--_m cRca b sin 2v ¢= -_m _ca b cos 2,/ ............... (23t)

which, except for m', have the same values as (15), entailing the same polar streamlines (18).
The equipotentials on a'b'c' are its intersections with the family xy = -sr/rn',_ = const.

At any point (x, y, z) on a'b'c' the orthogonal velocity components are by (23)

, b_ de' , b_ d,/ , b_ d_
q _=_fe' dn q *=i5,1 ds_ q '_=boa ds_, ................. (25)

_n, _s_, _s, denoting line elements along the normal, meridian, and circle of latitude, as in
Figure 3. Since q'_ is absent from (1), we shall not need it we merely note that on the model's
surface it is r_¢ sin (0-_) cos oa. By geometry d,//ds,=r cos (O+[3)/a'b' cos 2,/,4 dc0'ds_=
1/b' sin ,7; hence

q'_= -m'_r cos (0+#8) cos _ q'_=m',_r cos B sin _ ......... (25,)

For _=0, q',(=q',/) differs only by m'o from (17_) for an elliptic cylinder; also r cos _=x .'.
q'_=m'_ x_ sin _=0, m'_ for _=0, 7r/2.

Superposing -_ on the above system adds to (25_), as easily appears

q"_ = - _r sin (8- _) cos c_ q", = - _r cos (O- _) cos co q"_ = _¢r cos _ sin ,,_ __ (2(;)

At the now fixed surface and on the x, y axes q==O=q'_+q",; hence summing (25_), (26)
gives there

q, = - [m'_ co_ (_+ _) + cos (0 - _)] .%r cos _---=_, cos _}q. = (1 + m'_)_,r cos _ sin _ sin _ . .................. "27

Thus for _=0 clearly q/qo=m', cos (O+2)+cos (_-_), differing from (21) only by m'_; for
= _r/2, q/qo = - (1 + re'C), a formula like that for a negative flow q0 across a cylinder; for _ = 0°,

90 o, 45 o, q= q_, q_, 2 (_2 +_ ). On the x axis q/qo = 1+ m'_; on the y axis q/qo= 1-m'_:.O

everywhere, hence no whirl centers on y.

Figure 8 shows [q/a_2_i on the meridians _o= 0, --45 °, -_ 90 ° of a fixed spheroid with a,b = 4.

Distributions symmetrical with these occur on the opposite half of the surface. Noteworthy
is q for ¢o= + 90 °. By (27) it is q = ± (1 + m'_)9_x; hence the straight-line graph in Figure ._.

Figure 8 shows also, for these meridians, the pressure computed with the working form,_l,,
derived from (1,), (27).

P = A cos 2_o+ B sin 2_o....................... _'2_!
1 2 2

d d 1 dsn_ . d,/ Also directly q' -_ --E. g., by (23) _lsyCY--cl$¢- _a'b" sin 2,7 cos w; viz, r cos (#+B)fa'b' cos 2_ , which g_ve_ _ in (25). r, e%
d

-m', _,_ zy=-m',g_,r cos (O+B) cos _.
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i

: L?.

'X

.4

:g

.-,4 N

• (3) .-+

+'i
"_CI.

k

FIGURE 8.--Prolate spheroid fixed in infinite inviscid liquid uniformly rotating about it; shows (1) z-wlse zonal

1 s
pressure-force, I/-_ p a fi_; (2) surface flow.speed, qfa _; (3) sarfnce presmu-o, l_/1 p a i ill, above or below

undisturbed local pressure In uniform stream, -ft. Crosses and circles give measured air pressures for P---

--39.fi radians per second given in reference 3
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where A= (1-[m'c cos (0+_)÷cos (8-_)] 2) cos:)7/cos2fl, B- -m'c(2+m'_)cos2)7. Here re'c=

.689 by Table IV. The crosses and circles, giving experimental values taken from Reference 3,
show good agreement with (28) for a considerable part of the surface. For cos _o=0, pocB_._2;
or the graph is parabolic.

Integrating p, as in (9), (10), gives for an inviscid liquid ]'= 0 = N, X_ 0. Figure 8 portrays
X computed from theory and experiment.

ELLIPSOID.--For an ellipsoid, of semiaxes a, b, _ along x, y, z, rotating about c with speed
_c in an infinite inviscid liquid, otherwise still,

= - m'_f_xy ................................ (29)

which for any outer confoeal ellipsoid a'b'c', has the constant potential coefficient

a 2 -- b 2

m'c = C([3-a) C=2(a2±b2 ) - (a_+ b_)(fl0_ aoi ............... (30)

the Greek letters being as in Part V. Surface values of m'c are listed in Table IV.

By (29) the equipotential lines on a'b'c' are its intersections with the hyperbolic cylinder
family xy = - _/m'c_= const. The orthogonals to _, const, at the surface a'b'c' are the stream-

lines there. These by (31) are parallel to x where x=0; parallel to y where y=O; normal to
z where z-0. The same obviously holds for spheroids and other ellipsoidal forms.

In the xy plane the flow has the polar streamlines (18); also it has there

1 , ,-, 1 , ,.,
_= -_m _a b sin 2)1 ¢= -_m _a b cos 2_ ............. (29_)

whence the streamlines in that plane are plotted. The form of (2%) is like those of (15) and
(23_), for the elliptic cylinder and prolate spheroid, entailing similar expressions for the velocity
and pressure in the plane-flow field z = 0.

For the general flow the velocity components at a'b'c' are by (29)

u'= -(x_mx _c + m'_)_y v'= -(y_)2; _+ rn'_)_ w'= f_ bm'_- _Y _)z ...... (31)

and those due to the superposed velocity -f_cR = q0, are

u" = f_¢y v" = - f_x w" = 0 ..................... (32)

whence the resultant velocity and pressure may be derived for all points of the flow field about
the ellipsoid fixed in the steady stream -fz_R. In forming the x, y, z derivatives of m'_ one
may use the relations (14) and (72).

Everywhere in the planes x=O, y=O, the resultant velocities are respectively, by (31)
and (32),

q=u=(1-m'_)f_y q=v= - (1 + m'_)f_gc .............. (33)

while in the plane z=O, q can be found as indicated for an elliptic cylinder. (33) apply also
to the elliptic cylinder and prolate spheroid previously treated, and to all other forms of the
ellipsoid fixed in the flow -_¢.

(B) BODIES IN COMBINED TRANSLATION AND ROTATION

MOST GENERAL MowmN.--The most general motion of any body through a fluid may
have the components U, V, W along, and fZ_, f_b, f_ about, three axes, say a, b, c. The entailed
resultant particle velocity q' at any flow point is found by compounding there the individual
velocities severally due to U, V, IV, f_,, f_, f_¢, and computable for an ellipsoid by formulas in
Reference 2 and the foregoing text.

YAWING FMGHT.--In airship study the flow velocity q' caused by a prolate spheroid in
steady circular flight is specially interesting. Let the spheroid's center describe about 0,
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Figure 9, a circle of radius ha, with path speed haft. Then if a is the constant yaw angle of

_ttack, the component centroid velocities along a, b, and the steady angular speed about c are,

rc_i)ectively,

U= haft cos a V = na_ sin a ftc = ft .................. (34)

if, now, velocities the reverse of (34) are imposed on the body and fluid, q_=0, and the

_m'face velocity q on the fixed spheroid has in longitude and latitude the respective components

q,= (1 +k_) U sin 0- (1 +k_) V cos 0 cos ¢o-[m'_ cos (8+_)+cos (0-_)]_r cos _] _(35)
q_= (1 ÷kb)V sin _+ (1 +m'c)_2_r cos _ sin _ J ---

wh('re positive flows along ds are, respectively, in the directions of increasing n, _, as in Fig-

11re 3. The terms in U., V, are known formulas for translational flow, e. g., Reference 2; the others

_H'e from (27). Hence q2 then p is found for any point (fl, _) on the spheroid? If P._ is negli-

gible, q=_ sin _, where _2= (1 +/c_)2U2+ (1 +/¢_)2V2, and , is the angle between the local and

polar normals, as proved in Reference 2.

1 2
Figure 9: portrays, for specified conditions, theoretical values of p/_pQ, Q being the path

1 2
sp(,ed -v/U_+ V 2 of the spheroid's center; it also portrays p/_pQ for the model in rectilinear

1 2
motion, with (2 = U. The difference of p/_pQ for straight and curved paths, though material,

is less than experiment gives, as shown by 93. Fuller treatment and data are given in

R('fcrcnce 3.

The forces X, ]z and moment N, for any zone, may be computed as before; but for the

u ht)le model they are more readily found by the method of Part IV. Zonal Y and N for a

hull form are found in Part III.

The first of (35) applies also to an elliptic cylinder, with cos _=1, m'_= (a2-b2)/2ab.

Fixed in a flow - U, - V, -_, it has the surface velocity

Va2 - b2 7q = (1 ÷ b/a) U sin _- (1 + a/b) V cos 0- L 2ab- cos (0 + _) + cos (_- fl)_ft_r ......... (36)

For an endless flat plate b =0, cos O=b/a. sin 0 cot n; and the last term of (36) may be rewritten

by (211); thus (36)becomes

q = ( U- V cot n- a_ cos n cot 2n) sin 0........................ (37)

These two values of q with (ll) give the pressure distribution over an elliptic cylinder or flat

plate revolving about an axis parallel to its length or fixed in a fluid rotating about that axis.

Thus .an endless plate of width 2a, revolving with angular speed _2, path radius ha, and

incidence a, as in Figure 10_, has by (37) the relative surface velocity, viz, slip velocity

q/af_=(n cos a-n sin a cot r-cos n cot 2n) sin 0 ................... (38)

and since sin 20= 1, qo2= U2+ (V+xft)2=a_(n:+2n sin a cos n +eos2n), (1) gives

.1 _ _ _ 1
p/-_pa _ =n +2n sin a cos n+cos 2n-n_ (cos a--sin a cot n- n cos ,_ cot 2,7) _......... (39)

For n=3, a=30 °, Figure 10_ delineates the distribution of slip velocity q/aft on both sides of

plate; 10_ that of the pressure P/2 Pa_fl: on its two faces. This pressure integrated overtile

the plate's double surface gives Y=O, as may be shown. The dashed line in Figure 103 is the

pressure-difference graph whose integral for _/=0 to _r is also zero. The resultant forces X, Y

aat[ moment N for such a plate are found in Part IV by a method simpler'than surface inte-

gration of the pressure.

IIere again q is the slip speed of the flow at any point of the body's surface, and depends only on the relative motion of body and fluid.
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FLOW INSIDE ELLIPSOID.--At any point inside an ellipsoid with speeds U, V, W, _a, fib,
_2,, along and about a, b, c, filled with inviscid liquid otherwise still,

b 2 - c 2 c 2 - a2 a 2 - b 2

¢= Ux + Vy + WZ + b2+ c2_,yz + d. + a2 .qbZX+ a2+ b2_,xy .............. (40)

al
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FIGURE 9.--Prolatespheroidinstcadyyawingflight. (1) Defines

velocity conditions; (2) delineates theoretical pressure dis-

tribution; (3) experimental pressure distribution for Q= 40 feet

pet second. In (2) and (3), full lines indicate r_tilineat,
dashed lines curvilineat motion
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FIGURE 9 (continued).--For conditions (l), (4) delineates pressure load per unit

length; (5)the zonal force;(6) the zonal moment. In (4) the fulland dotted lines

give theoreticalvalues from equations (ax),(b_);the dashed line,experimentalvalues

from reference3. (5)isobtained by planhnetring (4);(6) by planimetring (5)

whose coefficients are constant for the whole interior. Hence the components of the particle
velocity q are

C_ -- a _ a _ -- b _

b'#=u = U+c_a_gt_z ...................... (41)bx + a_+ b_-_ _y- -
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and like values for v, w found by permuting the symbols. If the fluid were solidified any
particle would have

u = U+ _bz- _,y, etc., etc ........................... (42)

Thus when an ellipsoid full of inviscid still fluid is given any pure translation its content moves
as a solid; but when given pure rotation each particle moves with less speed than if the fluid
were solidified, since the fractions in (41) are less than unity.

For velocities U, V, _, of the ellipsoid
a2- b2

_o= Ux + VY +a_T6+b2U,xy ........................... (43)

\

I

/
/

y

/
/

.i ._ _ I

a .v a U

/

(0

.6
I

-41

-/

--3_. /
i

-as _

-_

o//

--/0 _

--/5 _"

- -20 _

- -25 _

-30 _

FIuv_.E 10.--Endless fiat plate revolving about axis parallel to its length, in infinite Inviscid fluid. (l) Defines conditions; (2) delineates

1 I

relative velocity q/a I2 of fluid; (3) pressure p,-_- p a 2 _2, and pressure difference A p/_ p a_ t3= on two faces of plate

for which w=b_/bz=O. For this plane flow (4) .with (43) gives

T 1 _ a2 - b=
_b= Uy - vx - _ _, _ (x_- y_) ........................ (44)

whence the streamlines may be plotted. In particular if the model has simple rotation _2_,

a=+ b=
x _- y== - 2 a=_ b=_/_, = const ......................... (45)

and the interior streamlines are hyperbolas, as in Figure 5.

Adding (2) to ¢ in (45) gives the steady flow

¢/= _2_ (a_y_+ b_x_)_ _ (46)
a_+ b_ ...........................

hence the streamlines lie on the elliptic cylinders

a_y _+ b_x_= (a _+ b=)/_¢ = const ........................ (47)
104397--30-----28
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By (46) q = 2t2c(a4y 2+ b4x2)t/(a 2+ b_), which put in (1) gives at (x, y), since q0= - _cR,

4(a4y 2+ b_x2)
P,-P=_a2+-b_)2(x2+y2)P ................. (48)

where p,=pq02/2. Here p, is the centrifugal pressure due to the fluid's peripheral velocity
q0, and p is the pressure change due to q0- q, q being the relative velocity of fluid and container.
In a like balloon hull q would quickly damp out, leaving only p, as the dynamic pressure. At
the ends of a, b, c, respectively, (48) gives

p, - p _ 4b_ 4a _
p. (as+_, _, 0.

For large a/b the first is negligible, the second approaches 4, giving p- -3p,,= -1.5pl2c_b _ as
the temporary dynamic pressure drop inside the hull at the end of b. Experimental proof
would be interesting.

POTENTIAL COEFFICIENTS.--An ellipsoid of semiaxes a, b, c along x, y, z, when moving
through an infinite inviscid liquid, otherwise still, with velocities U, V, W, _, _, _ along and
about the instantaneous lines of a, b, c, begets the known velocity potential

,p= --m_Ux--mbVy--m_Wz--m'_2=yz--m'_bzx--m'_t2gcy ......... (49)

the six potential coefficients m being constant over any outer confocal ellipsoid a'b'c'. Their
values for abc are given in Tables III, IV. Alternatively (49) can be written for this surface

. , b2+ c2 , c2+ a2 a2+ b2
= - k _ [x - k b_'y - k_ ]_'z- __c2k _yz - c_ _ ask' _o.bzx - a_._ b2k' _ _xy ...... (50)

the ks being the more familiar inertia coefficients defined and tabulated in Part V. Of the six

potential coefficients in (50) the first three are the same as the inertia coefficients k,, k_, k,;
the last three are greater except when c/'b or a/c or b/a is zero. Thus, if b/a = 0 the last term of

(50) is - k'_xy, which is the potential on the outer surface of an elliptic cylinder (a = co) rotating
about c. Everywhere inside of it the potential is t2gcy, as (40) shows.

For the flow (40) textbooks give the inertia coefficients

_b 2_ c2\e /c 2 __ _/2X2.

b-_e2+a2), etc ......... (51)

which are the squares of the potential coefficients. One notes too that the ratios of like terms

in (40), (50) equal the ratios of like potential coefficients and like inertia coefficients, which
latter in turn are known to equal the ratios of like kinetic energies of the whole outer and inner
fluids, if the inner moves as a solid.

RELATIVE VELOCITY AND KINETIC PaEssunE.--When a body moves steadily through a
perfect fluid, otherwise still, the absolute flow velocity it begets at any point (x, y, z), being
unsteady, is not a measure of the pressure change there. The relative velocity is such a measure.
To find it we superposed on the moving body and its flow field an equal counter velocity, thus
reducing the body to rest and making the flow about it steady. The same result would follow

from geonietrically adding to said absolute flow velocity the reversed velocity of (x, y, z) assumed
fixed to the body. In particular this process gives for any point of the body's surface the wash
velocity, or slip speed, which with Bernoulli's principle determines the entailed change of surface
pressure. Conversely, if the pressure change at a point is known or measured, it determines
the relative velocity there. In hydrodynamic books the above reversal is used commonly
enough for bodies in translation. In this text it is employed as well for rotation; also for
combined translation and rotation. However general its steady motion, the body is steadily
accompanied by a flow pattern whose every point, fixed relatively to the body, has constant
relative velocity and constant magnitude of instantaneous absolute velocity and pressure.
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PART 111

ZONAL FORCES ON HULL FORMS 1

PRESSURE LOADING.--For a prolate spheroid abc with speeds U, V, fL, Figure 91, or fixed

in a stream - U, - V, -_c, (35) gives at (x, y, z) on abe the relative velocity

q2 = qy2 __ q¢2 = A -- B cos o3 _- C cos 2 oJ

A, B, C being constant for any latitude circle. In forming this equation one finds

B = 2 (1 + ka) U sin 0{ (1 + k b) V cos 0 + [m'c cos (0 +/_) + cos (0- _)]r_c},

etc., for A, C. In the body's absence said stream has, at said point (x, y, z),

qo 2= (-- U+y_c)2+ (- V-x_c)2_AI-B1 cos _+ C1 cos 2 w,

where o: alone varies on the latitude circle. Its radius being yo=Zo, makes Y=Yo cos o_,

B1 = 2 Uzo_,

etc., for At, C_. Putting q, q0 in (1) gives the surface pressure

p/.Sp = qo2- q_= (A, - A) + (B- B_) cos _ + (Q - C) cos2 _.

By (101) the loading per unit length of x is, since cos _o=0 = cos a co,
jo

- p cos o_dz = - (B- B,)Zo cos 2 o:d_o = - r(B-B1)zo ........ (a)

A, A_, C, C_ vanishing on integration of p. Thus, finally,

P/.5pQ 2= - _-(B- B_)zo/Q_.................... (a_)

P having the direction of the cross-hull component of p at o: = 0.

One notes that q_(o¢ sin 2 o_) contributes nothing to B or the integral in (a); viz, the loading

P is unaffected by q_, and depends solely on q,, the meridian component of the wash velocity.

Also for t_ = 0 and r, B-Bt = 0 = P.

In Figure 94 the full line depicts (a_) for the spheroid shown in 9_, circling steadily at 40

feet per second. The theoretical dots closely agreeing with it are from Jones, Reference 3, as is

also the experimental graph. Beside them is a second theoretical graph plotted from Doctor

Munk's approximate formula derived in Reference 8 and given in the next paragraph. But

that Professor Jones omitted some minor terms in his value of p, his theoretical P/.5pQ" should

exactly equal (a_). His formula, derived by use of Kelvin's p_/p=_.-q2/2, can best be studied

in the detailed treatment of Reference 3.

In Reference 8 Professor Ames derives Munk's airship hull formula

P . dS 2 d

5pQ_,= sm 2or., - dx + _ dx (zS),

1This part was added alter Par_2 L II, IV, V were typed; hence the special numbering of the equations.
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S being the area of a cross-section;R the radiusof the path of the ship'scenter. This was

assumed validfor a quite longishsolidof revolution;for a short one itwas hypothetically

changed to

P 2_dS' 21_R_dx(xS)- _(b)15oQ2= (k_- k_) sin _,-- ....................

Applying this to a prolate spheroid we derive the working formula

P
.5pQ_ = - Lx- Jlx 2+ N_ ........................... (b_)

where the constants for a fixed angle of attack are _

_: b_2rL=2(ko-k_) .rsin2a, M=3k'Ca" R cosa, N=k,b 2 2rr• • R cos _.

Plotting (b,) for the conditions in 9, gives the dotted curve in 9,. It shows large value_
of P/.5oQ 2 for the ends of the spheroid, where (a_) gives zero. To that extent it fails, thoug},

with little consequent error in the zonal force and moment at the hull extremities. It has th,
merit of being convenient and applicable to any round hull whose equation may be unknowl_
or difficult to use.

ZONAL FORCE.--An end segment of the prolate spheroid, say beyond the section x=x_.
bears the resultant cross pressure

,(_ ................................
/.

= j_, P dx (,,

which with the resisting shear at x_ must balance the cross-hull acceleration force on the seg-
ment in yawing flight. For the whole model (b_) with (c) gives Y=0, which is not strict('
true for curvilinear nmtion; but (al) with (c) gives the correct, theoretical value of Y, and

agrees with (67).
In Figure % grapils of Y/.5pQ 2, for the values (a_) and (b,) of P, are shown beside tho-(,

derived from Jones' experimental pressure curve. Since Y is proportional to the area of ,
segment of the graph of P, it can be found by 1)lanimetering the segment or by integrating P&.

ZONAL MOMENT.--The loading P exerts on any end _egmcnt, say of length a-x, t.hr
moment about its base diameter z

5% = j_
Y dz

which can be found by planimetering the graph of Y. Figure 9a delineates N_ so derived fro_,
the three graphs of Y. They show the moment on the right hand segment varying in length
from 0 to 2a; also on the left segment of length from 0 to 2a. The resisting moment of tl:, _
cross section must balance 5'_ and the acceleration moment of the segment.

CORRECTION FACTORS.--No attempt is here made to deduce theoretically a correcti()n
factor to reconcile the computed and me'asured p. In Reference 3 Jones shows that the ttl,_,-
retical and experimental graphs of P/.5pQ _"have, for any given latitude x_>a/2, the sal,.c
difference of ordinate whatever the incidence 0<(_<20 °. Thus the ordinate difference fou_,d

for the zero-incidence graphs, when applied to the theoretical graph for any fixed 0<a<21, ,
determines the experimental one with good accuracy. Such established agreement in loadi_
favorably affects, in turn, the graphs of Y, _ the transverse force and moment on any e,A
segment of the spheroid.

• . x I y_l dyQ b: z dS dy0 . b 2

From the meridmn curve aT-+b_ =I, dx = -_ _' S=_ryd; hence dz =2_ry0 dz = -zr a2 x, which put in (b) leads to (bt).
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PART IV

RESULTANT FORCE AND MOMENT

]_ODY IN FREE SPACE.--Let a homogeneous ellipsoid of semiaxes a, b, c move freely with

::omponent velocities u, v, w, p, q, r 1 respectively along and about instantaneous fixed space

_xes x, y, z coinciding at the instant with a, b, c. Then the linear and angular momenta referred

:OX, y, Z are

mtu rn_v m_w Alp B_q C_r ................... (52)

m_ being the body's mass, A_, Bj, C_ its moments of inertia about a, b, c. If, now, forces X_,

}'_, ZI and moments L_, M_, N_ are applied to the body along and about x, y, z, they cause in

*.he vectors (52) the well-known change rates

mt(iL-rv+qw) =X_ A_p- (BL-- Q)qr=L_ ]

mL(b--pw+ ru) = Y_ B/_- (C_-At)rp = 311 I ......... ..... (53)
m_ ((o- qu + pv) = ZI C_÷- (A_ - B_)pq = N_

_hich apply to any homogeneous solid symmetrical about the planes ab, bc, ca.

For motion in the ab plane; viz, for w, p, q=0; (53) give

X1 = m_(/*- rv) Y_=m_@+ru) N_= C_ ................ (54)

.nd for uniform revolution about an axis parallel to z, as in Figure I1, viz, for/L, i5 ÷=0, (54)

become

XL = -- mlrv Y1 = mlru Nl = 0 ...................... (55)

_vhere now X1, I71 are merely components of the centripetal force mlr_, whose slope is

)'_/X_ = -u/v. Also if Q= _/u2+v 2 is the path velocity of the body's centroid, h its path radius,

r = Q/h is the angular velocity of h and of vector m_Q.

REACTIONS OF FLUID.--If external forces impel the ellipsoid from rest in a quiescent fric-

titmless infinite liquid, with said velocities u, v, w, p, q, r, they beget in the fluid the corresponding

linear and angular momenta

]¢amu ]¢bmv lc_mw k',Ap lc'bBq k'_Cr ............. (56)

where m is the mass of the displaced fluid, and A, B, C its moments of inertia about a, b, c.

One calls learn, tcbm, lcdn the "apparent additional mksses "; ]c'_A, ]c' _B, k'_C the "apparent

additional moments of inertia," of the body for its axial directions; because the fluid's resistance

t. its linear and angular acceleration gives the appearance of such added inertia in the body.

Tim six k's are called "inertia coefficients," and are shape constants. Values of them are

given in Tables III, VI, VIII for various simple quadrics.

The component flow momenta (56), like (52), are vectors along the instantaneous directions

of a, b, c; viz, along x, y, z; hence their time rates of change must equal the forces and moments

which the body exerts on the fluid; viz,

X= m(Tc_ix- ]cbrv + lc_qw) L= lc'.A p- (l¢'bB- ld _C)qr- (k b-- lc_)mvw

Y=m(lcj;-k_pw+lc_ru) M=Ic'bB_- (k'_C-lc',A)rp- (k_-lc_)mwu .... (57)

Z=m(k/v-lc_qu+k_pv) N=Ic'_C_- (k'_A-lc'_B)pq- (lc_-k_)muv

These new meanings of u, v, w, iE, q, r am amigned for conwntion's sake and for convenience.
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all written from (53) on replacing its momenta by those of (56), and adding vector-shift terms.
Thus tile vector lcjnw shifts with speed v entailing the change rate kcmw.v of angular nlomentunl
about x, while k_mv shifts with speed w entailing the opposite rate---kbmv.w. Their sum is
(kc-lc_)mvw. Permuting these gives for the y, z axes (k_-kc)mwu, (kb-lc_)muv. When the
k's are equal the vector-shift terms vanish as for said free hody, or for a sphere, cube, etc., in a

fluid. The fluid reactions are (57) reversed. (57) apply also to fluid inside the trisymmetrical
surface.

If the angle of attack is or=tan-Iv�u, we may write in (53), (57)

1
r=Q/h u=Qcosa v=Qsin_ uv=-_Q sin2a ........... (58)

\

m LL .1"

/
' I /

FI.quR_: ll.--Momenta and forces for free body in uniform circular motion. Centripetal force, Rz=mQr=

mQVh, has slope --u/v, r being angular speed about 0

Of special aeronautic interest are (57) for plane motion, such as in yawing airship fligtd.

for which w, p, q=0, giving

X=m(k_iz-kbrv) Y=m(kbb+k_ru) N= k'_C_+ (kb-k_)muv ..... (7,9_

Thus for uniform circular flight

X= -k_mrv Y=k,mru N= (k_-k_)muv ................. iii_)

which are the analogues of (55) for the free body. Or in notation (58)

X = - k _r oQ"h °Q2 sin c_ Y=k_rp(2" cos a N= (kb--lc_)r . sin 2a ........ {61)

r being the volume of the model.
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As shown in Figure 12 (60) give the resultant force and slope
k,

R_=mr_/ka2u2+kb'_V 2 Y/X= -kb cot a= -cot/_ .............. (62)

also R and N at the origin are equivalent to a parallel force R through the path center 0, along
a line (called the central axis of the force system) whose arm and intercepts are

l - N/R = h sin (_- a) x = l see f_ y = l cosec _ ............. (63)

\,

c"°_>, o/

b'l(;ua_ 12.--Momenta and forces h)r symmetrical body in uniform circular motion through frictionless infinite

liquid otherwise at rest. Whole hydrodynamic force, R=mr,]k,2 u_-pk,_ r2, has slope --k_ u/k_ r. Yaw

moment N=(kb-k°) muv=(ka-k,) r PQ2 _ sin 2a, 1- being volume

For steady motion (60) show that the body sustains no force in pure translation (r-0);
no force nor moment in pure rotation (u, v=0); no moment in revolution about a point on
x .r y; viz, for u-0, or _'=0. For given u, v the moment is the same for revolution as for pure
translation. The forces result from combined translation and rotation; the moment from
tr:mslation oblique to the axes a, b, irrespective of rotational speed.

COMBINATION Of APPLIED FORCEs.--To find the whole applied force constraining a body
to uniform circular motion in a perfect, fluid (55), (60) may be added, or graphs like those of
Figures 11, 12, may be superposed. For an airship having mr=m, (55), (60) give

X= - (l -_-k_)mcr Y = (l +k_)mur N= (k_-k_)muv .......... (64)

2 Writing R=rQ.m_/k.2 cos-_£5-k;2 s(n]_, we may call it the centripetal force of the apparent mass m_k._cos2a+_Saa for the body direc-

tion c_f q.
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where X=X_+X, etc. Figure 13, compounded of Figures 11, 12, shows that a submerged

plane-force model, revolving uniformly about its path center, may have as sole constraint a
single force R through that center, and outside itself; that is attached to an extension of the
model. Such conditions appear commonly in vector diagrams of aircraft. The line of R, so

defined, is the central axis of the force system.
HYDROKINETICALLY SYMMETRIC FonMs.--Equations (56), (57), for trisymmetrical shapes,

apply also to others having hydrokinetic symmetry. Examples of these are: All surfaces at'
revolution, axially symmetric surfaces whose cross sections are regular polygons; torpedo forms

symmetrically finned, etc. All these figures, as has been known many decades, 3 have three

\
\

\

\
\

\ /
\\ /

k. mu.r /

1 //
/

/
/

I 1 /
II 1I _ /

L I /

-k b mv.r -mv.r

FIGURZ 13.--Composition of forces on symmetrical bor].y in uniform circular motion through frictionless infinite liquid

otherwise at rest. Resultant of centripetal and hydrodynamic Iorces, R=rn r -_(i÷ko)) Ut+(l+k_)2_i_ has slope

l+ko u
l+kb v Figure 13 isII and 12 compounded

orthogonal axes with originat the body's impulse center,_such that ifthe body, restingin

quietsea of perfectfluid,isimpelled along or about eitheraxisitbegetsin the fluida line,_

or angularmomentum expressibleby a vectoralong thataxis.

EXAMPLEs.--We may apply (60) to some simple cases interestingto the aeronautic

engineer.
(1) For an endlessellipticcylinderin uniform yawing flight,as in Figure 12, m = z-pabp,r

traitlength,and by comparison with Table VIII I¢_=b/'a,_b=a/b; hence by (60)

) See Reference 7.

I e, the point of intersect on of k,mU, kbrnV, k_mW; it may be found as in the last paragraph of Part V.
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ra2prv :Y= _b2pru N= r(a 2- b2)p.uv = r(a 2- b2) p2X = - sin 2a ....... (65)

The resultant force 7rpr_/a_v_+b4u '2 has the slope -b2u/a2v=-b2/a2.cot a; the central axis is
through the path center; X is the same as for a round cylinder of radius a; Y the same as for
one of radius b. For a good elliptic aircraft strut a/b=3; hence X/Y=-9v/u=-9 tan a;

N=8rrb2puv=8_rb 2. .sin 2_. By (65) N is the same for all eonfoeal elliptic cylinders, since

_l2- b2 is so.
,..,i, *,

If a=b, as for a round strut, N= 0, R = _ra2pr_and coincides with tim body's previously
found centripetal force to which it bears the ratio re�m,.

If b=0, as for a flat plate, (65) become

X = - 7ra2prv Y= 0 N= _raepuv = 7ra 2pQ2- sin 2a_ _ _ (66) _
2 .........

The equivalent resultant force 7ra2prv, with slope Y/X=-0, runs through the path center
parallel to z. If r=0, the plate has pure translation, with forces X, Y=O, and moment
X = ra2puv, a well known result. X in (66), being the same as in
L65), is independent of the strut thickness b.

k

(2) For a prelate spheroid, of semiaxes a, b, b, in uniform o\ z
yawing flight, m = 4/3.Trpab 2, and ka, kb are'as given in Table III.

Thus for a/b=4, k_, ka=0.082, 0.860; hence by (60)

X = - 3.6ab2prv Y= O.3434ab2pru N= 3.26ab2puv_ (67) w_........

(3) For an elliptic disk of semiaxes a, b, c, moving as in Fig- '* v_ v4 2 b v-
_re 14, Table VIII gives k,m = _pab/E; hence by (57) the forces

:rod moment are

4a ,2
Y= - k,mpw = - 3E._Po .pw Z = 0 x

FlOt.IRZ 14.--Thin elliptic wing moving par-
4 a ,2 allel to its plane of symmetry through a

L = k_m.vw = 3_,._po .vw_ _ _(68).... perfect fluid

Lhe other pertinent terms in (57) vanishing, as appears on numerical substitution. Here

E= E 0, _- , sin20 = (a2- b2)/a_; also L = 3E_-0 2 sin 2,_. Compare (68) with (66), calling b the

width in both.

THEORY VERSUS EXPE_IME_rT.--In favorable cases the moment formulas of Part IV

,,'cord fairly well with experiment, as the following instances show. For lack of available data

_hc force formulas for curvilinear motion are not compared with experiment.
(1) By (65) an endless elliptic strut with a=l/3 foot,, b=l/12 foot, c=5 feet, held at a

d,grees incidence in a uniform stream of standard air at 40 miles an hour, for which pQ2/2 =
4 093 pounds per square foot, sustains the yawing moment per foot length

N= 7r(a _- b_) • °Q2 .sin 2_= 1.3392 sin 2a lb. ft ................... (69)
2

This compares with the values found in the Navy 8 by 8 foot tunnel, as shown in Table IX
I,ired from Figure 15. The agreement is approximate for small angles of attack. The model

_s of varnished mahogany, and during test was held with its long axis c level across stream,
,,_d with two closely adjacent sheet metal end plates, 2 feet square, to give the effect of plane
l],w.

- Equations ({}6) were published in Reference {}as the result era special research to determine the fluid forces and moment on a revolving plate
h: i ne present text they follow as corollari_ from more general formulas.
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(2) By (66) an endless thin fiat plate of width 2a= 5112 feet, similarly held in the same
air stream, has per unit length the moment

N = _ra2pQ_
2 sin 2a = 0.5581 sin 2a lb. ft .................... (70)

This is compared in Table X and Figure 10 with the values found in the Navy 8 by 8 foot
tunnel. The fiat plate was of polished sheet aluminmn 3/32 inch thick, with half round edges
front and rear.

Again for an endless fiat steel plate 5.95 inches wide by 0.178 inch thick at the center, with
its front faec ttat and back face V-tapered to sharp edges, Fagc and Johansen, Reference 6,

K × 7"heorahcal /

(r ?"

oU_ ,,

I I //Experimen_o/

,l!
I r I I _ I I I I

-8 ° -5" -4" -Z°j 2 ° 4 ° 6" 8"

ArJ_/e_/ o �lock ff

-,/

--.2
.-,3

///

/

/ . -.,4

FIGURE 15.--Theoretical and experimental moment

about long axis of endless elliptic cylinder. Width

inches, thickness 2 inches, air speed 40 miles per

hour. Correction factor _=0.912

'D.D o D. '_-8 .... 2o 2 ° 4 ° 6 ° I_° 12" 14" t6 ° 18"

- -02 An q/e of o//ock, e{

-04

-06

- 08

--./0

/ -./2

-,/4

-./G

FIGURE 16.--Theoreetical and experimental moment about long axis of endless

rectangular plate. Width 5 inches, air speed 40 miles per hour. Correction

factor _=0.860

found, at 50 feet per second and 5.85 ° angle of attack, N--0.125 pound foot as the moment

per foot run about the long axis, computed from the measured pressure over the niedian section.
By (66), a thin flat plate would have

PQ_ • sin 2a = 0.1931 × 2.9725 × 0.2028 = 0.116 lb. ft.
N= _a _• -_-

which is 7 per cent less than 0.125 found with their slightly cambered plate.
(3) An elliptic disk 3./32 inch thick with a, b = 15, 2.5 inches, when held as a wing in the

Navy 40-mile-an-hour stream, had the moment L versus angle of attack a shown in Figure 17
and Table XI. For rids case

sin2e = (a: - b')/a" = 875/900, _ = 80 ° - 24', E= 1.03758.

Also in (68) a=5/4 feet, b=5/24 feet, Q_=4.093; hence

4 a pQ2
L=3E. _b_ • _- • sin 2a = 0.8963 sin 2a lb. ft .............. (71)
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which gives the theoretical values in Figure 17 and Table XI. The agreement is fair

at small incidences. The disk as tested was

edges without any rounding or sharpening.

(4) For a wooden prolate spheroid

24 inches long by 6 inches thick,

carried as in Figure 12 round a circle

of radius h = 27.96 feet to the model's

center, Jones, Reference 3, found at

40 feet per second the values of N

listed in Table XII. For this case

Table III gives kb-k,=0.778, and

(61) gives

p02
N= (kb-k_)r. _ .sin2a=0.388sin2a.

These values appear from Table XII

not to accord closely with the experi-

mental ones.

CORRECTION FAcwoas.--Figures

15, 16, 17 portray experimental-8"-6 ° -4"-Z"

moments, at small angles, as accu-

rately equal to the theoretical times

an empirical correction factor _.

Thus amended (61) gives for the

experimental moment

5_=KN=K(kb--k,)r • pQ2. sin 2a.
2

For the given elliptical cylinder

K=0.912 with -8°<a_6°; for

the endless plate K=0.860 with

-6°_a<6°; for the elliptic disk

_=0.887 with -50<a<4 °. In such

cases one should expect to find the

actual air pressure nearly equal to

the theoretical over the model's

forward part, but so deficient along

the rear upper surface as to cause a

of sheet

-.20

aluminum cut square at the

I I I I I I I

_o 4 ° 6 o 8 o i0 • 12° 14° 16° /8 o 20 o
-_02 An_/e of o_'/ock,_

-.04

-.06

-.08

-./0

12

14

/8

'20

FIGURE17.--Theoretical and experimental moment about long axis of elliptic disk.
Length 30 inches, width 5 inches, air speed 40 miles per hour. Correction factor
_=0.887

defect of resultant moment. No effort is made here to estimate it theoretically, nor to de-

termine it empirically for a wide range of conditions.

The measurements shown in Table X, for the fiat plate, were repeated at 50 and 60 miles

an hour without perceptible scale effect.
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PART V

POTENTIAL COEFFICIENTS, INERTIA COEFFICIENTS

GREEN'S II_;TEGRALs.--The foregoing text enlploys Green's well-known integrals, which
for the ellipsoid abc may be symbolized thus:

(®dX ® dX =abc d), ..... (72)
a =abc Jx a '3b'c' r = abe. a'b%' 3' a'b'c '3 --

where a' = ,,/_a_T X, b' = _/b_+-X. etc., are semiaxes of the eonfocal ellipsoid a'b'c'. The integrals

have the following values, Reference 4:

c_=A(b2-c2)tF(O, ¢) - E(O, _)1 ]]]

Vb2 - c_ a2 -- b2 c' E'O ......r = A (c2- a2)La 2_ c2F(O, ¢) + _/a__ c_a,b_ - _ , _) ......... (73)1

3.=A(a__b_)E_/a22c 2 b'
3

a'? - E(o, _)_j

where
2abe

A = (a_Z_ (b2A c2).(a z , c_

and the elliptic integrals are

F(0, _) = f(1 - sin20 sin2_)-'_d¢

a 2 -- b 2 . a 2 -- C2

sin20 = a2_ c_ sm2_ = a2q:_ ............ (74)

E(O, _) = f(1 - sin20 sin2_)_d_ ......... (75)

Numerical values of F(O, _), E(O, _), a, _3,3" are given in Tables I, II for X=0 and various

ratios a/b, b/c; viz, for various shapes of the ellipsoid abc. For _= 7r/2 one writes F(O, _)= K,
E(O, ,p)= E, by convention.

POTENTIAL COEFFICIENTS.--For motion (49) the ellipsoid abc has the potential coefficients
known from textbooks.

ot

m_=2_ao

2-_ oo

3/

mc=2--_o

G(3'- r) where G=_22+Cc: j
m'_ = 2G- (vo- Go) c2- a2_

H(_-,) where H=cZ_a_ [ .............. (76)
re'b- 2H- (ao- 7o) az _ b2|
m'¢ I(_- a) where

2-I_- (_o- ao) I= d_-__b_J

m_, m_, m, being for translation along a, b, c and re'a, m'_, m', for rotation about them, and
a,, rio, 3'o being (73) for X=0; viz, for a', b', c' =a, b, c. Surface values of (76), viz, for a, 13,3'=
ao, 130,3"0are given in Tables III, IV. For fluid inside the ellipsoid the potential coefficients are

as in (40) and given numerically in Table V.
INERTIA COEFFICIENTS.--From (76) are derived the conventional linear and angular inertia

coefficients
k_, k_, k_=m_, m_, m_ k% k'_, k',=Gm% Hm'_, Im'_ ............. (77)

for the ellipsoid moving through or containing liquid, as in (40), (49). Surface values are
given in Tables III, VI, VII.

I (73) satisfy the known relation a+O+'t=2abc/a'b'c', as appears on adding.
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LIMITING CONDITIONS.--In soi_ne limiting cases, as for c=O, or a= b, etc., (73) may become
indeterminate and require evaluation, as in Reference 4. In such cases the formulas in Table

VIII may be used. For c=O, entailing zero mass and infinite/Co/c',, k'B, one may use in (57)
the values of lccm, k'aA, k'_B given at the bottom of Table VIII.

PHYSICAL MEANING OF THE COEFFICIENTs.--The tabulated potential coefficients, put in

(40) or (49), serve to find the numerical value of the potential _, or impulse -p_ per unit area,
at any point (x, y, z) of an ellipsoid surface? Integration of p_ over any surface, as explained
for p in Part I, gives the component linear and angular zonal impulses. So, too, integration of
-p_q,/2, where q, is the normal surface velocity at (x, y, z), gives the kinetic energy imparted
to the fluid; and integration of the impulsive pressure --p5_/i_t gives the impulsive zonal
forces and moments. One finds p_¢/5t for (40), (49) by using with them the specified density

p, accelerations U, V: _, f_a, d_, f_¢, and tabulated potential coefficients for the given semiaxes

a, b, c.

Thus putting -p_c, -p_'¢ for p in (9), (101), and integrating over the whole ellipsoid
surface, easily gives the fluid's linear and angular momenta

lc,.m W k'c. C_ .............................. (78)

where m W, Cf_c are respectively the linear and angular momenta of the displaced fluid moving
as a solid with velocities W, f_. The like surface integration of- p_cq,/2 gives, as is well known,

k,.m W2/2 k'_. CI22_/2 ........................... (79)

where roW2�2, C_,/2 are the kinetic energies of the displaced fluid so moving. Each inertia
coefficient therefore is a ratio of the body's apparent inertia, due to the field fluid, to the like

inertia of the displaced fluid moving as a solid.
By (49) the potential coefficients due to velocities W, f_c are

mo= - _/ Wz m', = - _'_/f_xy

The first is the ratio of the outer and inner surface potentials due to W at any point z on the

ellipsoid abc; the second is the ratio of the potentials due to f_¢ at (x, y), respectively on the
outer surface of that ellipsoid and inside the cylinder of semiaxes _, b, c.

One notes that the momenta (78) times half the velocities give (79); also that the time
derivatives of (78) are the force and moment Z, N=k_m_V, k'_C_2c, as in (57)for the simple
z-wise motions, t_r, _.

For any axial surface, say of torpedo form, moving as in Figure 12, the ratio -k'_Cf_,/kbmV
is the distance from the arbitrary origin 0t to the impulse center 03, or center of virtual mass.
This may be taken as origin, and if the body's center of mass also is there Figures 11, 12 can

still be superposed as in Figure 13. In the same way are related the acceleration force and
moment k bin V, k',C_,, thus illustrating the doctrine that the motion of a hydrokinetically sym-
metric form in a boundless perfect fluid, without circulation, obeys the ordinary dynamic

equations for a rigid body.

AERODYNAMICAL LABORATORY,

BUREAU OF CONSTRUCTION AND REPAIR, U. S. NAVY,

WASHINGTON, D. C., December 17, 1928.

' This impu]se is imparted by the moving surface to the fluid, otherwise still; the flui_ in turn tends to impart to the body the impulse p_

per unit area at (x,y, z).
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CHIEF SYMBOLS USED IN THE TEXT

GEOMETRICAL

a, b, c ............ Semiaxes of ellipsoid abe.

a', b', c'_ ....... Semiaxes of confocal ellipsoid a'b'c'.

e, e'_ ............ Eccentricities of ellipse ab and its confocM a'b' ; ae=a' e'= _/a:--br

n; h_, h2 ........ NormM to ellipse ab; distances from origin to normal and tangent.

l, m, n ........ Direction cosines of normM n to any surface.

s; sT, s ........ Length along any line; lengths along meridian and circle of latitude.

x, y, z .......... Cartesian coordinates; also coordinate axes.

r, B, ,o......... Polar coordinates of prolate spheroid abc.

7, 0 ........... Eccentric angle of ab, inclination to x of normal to ab.

KINEMATICAL

u, v, w .......... Component velocities of fluid parallel to x, y, z axes.

qt, q .......... Component velocities of fluid parallel to tangent and normal.

qo, q ............ Resultant velocity of fluid before and after disturbance.

u, v, w ......... Component translation velocities of abe parallel to a, b, c 1

U, V, 117......... Component translation velocities of abe parallel to a, b, c / Alternative sv,nbols.
p, q, r .......... Component rotation velocities of abe about a, b, c ...... "

_t_, _tb, _t .......... Component rotation velocities of abc about o, b, c .....

_, ¢ ............ Velocity potential, stream function.

rn_, rnb, m ....... Potential coefficients for abe with velocities u, v, w or U, V, W.

m'_, mtb, m _....... Potential coefficients for abe with velocities p, q, r or _._, _b, _-

0 = _/_ V 2+ W "___ Resultant vclocity of abc.

DYNAMICAL

A_, B,, C_ ...... Moments of inertia of rigid body about its axes a, b, c.

A, B, C ........ Moments of inertia of displaced fluid moving as a solid.

ml, rn ............ Mass of body, mass of displaced fluid.

p, r .............. Density of fluid, volume of model or displaced tluid.

p, p_ ......... Pressure of fluid moving, pressure on coming to rest.

X_, tq, Z,; R, ..... Component forces applied to free rigid body; resultant force.

X, Y, Z; R ...... Component forces exerted by body on fluid; resultant force.

L_, M,, N_ ........ Component moments about a, b, c applied to rigid body.

L, M, N .......... Component moments about a, b, c exerted by body on fluid.

k_, kb, k ...... Inertia coefficients for abe moving parallel to a, b, c in fluid.

k'_, k'b, k'¢ Inertia coefficients for abe rotating about a, b, c in fluid.
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FLOW AND FORCE EQUATIONS FOR A BODY REVOLVING IN A FLUID

TABLE I

ELLIPTIC INTEGRALS F(O, _), E(0, _)1

[Defined in eq. (75), Part V]

b/c

3 J 4 5 9 7 8

F(¢, ,p)

3

4

5
6

7
8

9

10

1.76305

2,06412
2. 29319

2. 47903
2. 635_

2. 77024

2. 89035

2. 99638

O• 0_00

1.04720
1. 43870

1.71374

1.92708
2. 10413

2.25400

2. 38432
2. 49971

2. 60288
m

9 i

1. 23095

1. 48399

1.68471
I. 85188

1. 99520

2.

333o3

1. 31814
1. 50687

I. 66560

1.80281
I. 92379

2. 03191
2. 12855

m

1. 36940

1, 52053
1. 65204

1. 76856
1. 87318

1.96804

1. 40332
1. 52959

1.64194
1. 74321

1. 83534

E(O, _)

1.42745
1.53595 1.44550

1.63405 1.54065

1.72357 1.62768

1 2

1. 45948

1. 54419 1. 47063
co

2 .86603 1. 04720
3 .94277 1. 07024 1. 23095

4 .96822 1. 06091 1.18103 1. 31814 I
5 .97975 1. 05019 1.14337 1, 25126 1. 36940

6 .98597 1.04146 1.11604 1.2(}294 t. 29996 1.40332 !
7 .98972 1. 03472 1. 09589 1.16833 "1. 24893 1. 33574 : 1. 42745

8 . 99214 1. 02946 1. 08071 1.14185 1. 21035 1. 28451 I.36317 1. 44550
9 .99378 1. 02529 1. 06894 1.12136 1. 18040 1. 24464 1. 31304 1. 38483 1. 45948 -

10 . 99496 1. 02195 1.05966 1.10516 1.15869 1.21297 1.27310 1. 33642 1.40_,0 1. 47063 ]

1. O0(EO 1.00009 1. 00000 1. C(}O(O 1. OOC(}O 1. 00000 1. Ol_}O 1. 00000 1. 000_ 1. lifO0 I

I The integrals in this table are culled from L. Potin's Formules et Tables Numerique.

TABLE II

GREEN'S INTEGRALS so, _0, _'o

[Defined in aq. (73), Part V]

b/c

at'C 3 4 5 6 7 8 9 10 =

066667

.34713 _ 47280

.21751 .31265

.15092 .22474

.11171 .17064

.0_6527 .13471

.069266 .10950

•056894
• 047710

•040637
0

0. 36400
• 26820 0.29636
• 20719 .23189 0. 24951

.16584 i .18769 .20336

• 13629 ! .15541 .16970
• 14426.091037 . 11435 . 13135

.097571 .11276 .12448._ i .08438L . ffd7957 .10872

O" 0 _ 0 i 0

O, 21541

• 18079
• 15440

• 13378
• 11728

0

O. 18950
• 16254 0.16914
• 14132 .14757

• 12428 .13010

0 0

O. 15271

O' 13500 . 13920 0

Be

0. 47280
• 534_3 0. 36460

• 56964 .39662
.59182 .41804

.60693 ,43307

.61775 •44413

• 62577 .45260
.63184 .45913

• 63659 .46437
• 66667 .50000

1. 05440
1.15312 1. 27078

1.20572 1. 33518
1.23752 1. 37478

1. 25835 1. 40110
1.27273 1•41956

1, 433061.28320
1.29109 1. 44329

1.29720 I. 45125
1.33333 1.50000

=

0. 29636
• 31587 0. 24951

• 32965 .26265
• 34083 .27275

• 34912 .28071
•35569 .28709

• 36109 .29233

•40(@0 ,33333

1. 40726

1. 45223 1. 50098
1. 48267 1. 53401

, 50377 1. 55754.51953 1. 57504

1. 53154 [ I. 58844

I" 54094 j 1. 59895
• 60000 1. 66667

O. 2154 l

• 22477
• 23234

• 23847
• 24354

• 28572

*re

1. 56918

1. 59443
1. 91325

I. 62775
1.63917

1. 71429

O. 18950
• 19654 O. 16914
.20237 .17458

.20725 . 17927

.2500O .22222

1.62100
1.64_J1 1. 66172

1.65630 1.67784
1.66846 I. 69062
1.75000 1.77778 '

0.15271

.15712

.20000

O. 139,'_

• 18182 I0

1

2

3
4
5

6

7
8

lg

1

2

5
6

7

10

1 O. 66667

• 82643

• 89127
• 92459

.94418
• 95678

• 96538
• 97154

• 97619
• 97972

1.0(_00

O. 66667

• 82643

• 89127
• 92459

• 94418
• 95678

•96538

• 97154
97619

• 97972

1.9@0(D

i

1.69457
1.70787 1.721_) !

1.80000 1.81818 !2.00G_O
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TABLE III

POTENTIAL COEFFICIENTS rn., rob, me* FOR ELLIPSOIDS IN TRANSLATION

(For outer surface of a b c)

[Defined in eq. (76)]

b/c

a/c 1 2 5 6 7 8 9 10

ma

1
2
3
4
5
6
7
8
9

10
¢o

I
2
3
4
5
6
7
8
9

10

1 0.5000.2100
.1220
•08162
•05916
•04522
•03588
•029_
•02444
•02974

0

0.5000
• 7042
• 8039
• 8598
• 8943
•9171
• 9331
• 9447
• 95,35

0. 3096
•1853
.12_6
• 09328
• 07222
• 05792
• 04769
• 04008
• 03423

0

O. 2229
• 1540
• 1156
• 09042
• 07313
• 06064
•05129

O"O44O6

O. 1740
• 1312
• 1_36
•08425
•07020
•05975

O"05150

O. 1425
• 1132
• 09272
• 07774
• 06637

0• 05748

•08366
• 07169

0"06229

O. 1047
•O8848
•07603

0_06626

0.09238
•07966
•06958
0

O.08267
•07239
0

O.07481
o 0

?/tb

:3983
.4203
.4257
.4469
.4554
.4618
.4_9
.5000

O. 2229
• 2474

.pd
•2925
•_80

•3333

O. 1740
•1876
• 1974
•2054
•2115
•2163
•2203
•2500

0.1425
•1512
•1579
.1633
•1676
•1712
.2000

O,1207
•1266
•1314
•1354
• 1387
• 1667

0•1047
• 1090 0. O9238
• 1126 .09564
• 1156 .0_46
,1420 .12500

O.08267
•08526
• IIiii

O.07_1
.10_0

0.50_
• 7042 1.115
• 8039 1. 362

:s_ 1.518
• 9171
.9_1
• 9447

11o_o

m_

1. 743
2. 008 2. 374

1. 623 2. 199 2. 651 3. 008
1. 697 2. 339 2. 866 3. 292 3. 642
1. 750 2. 446 3. 030 3. 620 3• 931
1. 790 2. 528 3. 153 3. 706 4. 171
1. 821 2. 5_ 3. 269 3. 860 4. 373
I. 846 2. 645 3. 357 3. 987 4. 543
2.000 3.000 4.000 5.000 6.000

* These have the same values as the inertia coefficients k., kb, ko.

4. 277
4. 570
4. 819
5. 032
7,000

4,912
5.208
5,465
8.000

6,548
5.846 8. 184
9,000 10. 0_0
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TABLE IV

POTENTIAL COEFFICIENTS re'o, re'b, m'c FOR ELLIPSOIDS IN ROTATION

2 3 41

(For outer surface of a b c)

[Defined in eq. (76)]

blc

mJa

8 9 10

0. 5643

• 6390 1. 045
• 6768 1. 135 1. 499

• 6989 1. 190 1. 596 1. 943
.7125 1.225 I 1.663 2.042

.7211 1.249 1.705 2.113
• 7270 ; 1. 266 I. 738 2.165

.7315 1.278 1.762 2.2_5

[ .7348 1. 288 i 1. 780 2. 2:35
: .7509 1. 333 ] 1. 875 2. 400

_ J ....

0
--0. 3990 --0. 5643

--. 5819 --. 8853

--.6888 --1. 104
--. 7581 --1.264

--.8058 --1.384
--. IM02 --1. 476

--.8659 --1.548

--. 8&57 --1. 607
--. 9013 --1.654

-- 1. 0(i00 -2000

o•3_ °o15_
• 5819
• 5888 [ ,2420

• 7581 _ .2969

--1.045
--I.349

--I.588

--1.780

-_.935

--2. 257
--3.000

--1.499

--1. 800 --1.943
--2.052 --2.243

--2.264 --2.504
--2. 445 --2. 732

--2.600 --2.931

--2. 734 --3.107
--4. O0O --5. 000

1
2

3
4

5

6 .8058 .335O

7 .8402 .3627
8 .8659 .3K36

9 .8857 .3998

10 .9013 .4127
L00_ . 5OOO

104397--3[)--29

0

0. 08332 0

• 1359 0. 05193

• 1719 .08705
• 1981 . 1134

• 2181 . 1330
• 2336 .1484

• 2460 .1608

• 3333 .2500

2.38O
2. 481

2. 556

2. 915
2.660

2. 917

2. 813

2. 915
2. _5

3.058
3.429

3. 2A5
3. 348

3. 430
3. 937

3. 675

3. 778
4. 444

4.103

4. 950

mSb

--2.38O
--2.680

--2.948

--3. 188
--3.402

--6.(_0

i

--2.813

-3. I14 -3. 245
--3. 388 --3. 547 -3. 675

--3. 637 i --3. 825 --3. 978

--7.000 i --8. 000 --9.000
i

rn',

--4. 103

--10. 000

i
0

O. 03549 0

•06127 O. 02569 0
•0_)81 .04529 O. 01951 0

• .0_10 i .06058 .03486 0.01527 0
• 1084 .07291 .04721 .02770 O. 01238 O

• 2000 .16667 .14288 1 .12500 . Hill 0.10(X)0
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,,/c

0tO

1
2
3
4
5
6
7
8
9

10

1 2 I 3
!

TABLE V

POTENTIAL COEFFICIENTS re'o, m'b, m'c FOR ELLIPSOIDS IN ROTATION

(For all points inside of a b c)

fDeflned ia eq. (40)]

b/c

4 5 6 7 8 9

O. 60o0o Q. 800000

o/-_°._oo
--i 88235

--. 92308
--. 94595 Same
--. 96000
--. 96923
--. 97561

I

m'==O

O. 88235 O. 92308 O. 94595

m%=ll

O. 96000

for all values of b/e

0.96923 0.97561 0.98020 1. 00000

m',=l

0
0. 28000 0

• 47059 0. 21951 0
. 60000 . 38462 0.18033
•68966 .50769 .32432
• 75342 .60000 . 43820
•80000 • 67010 . 52830
• 83486 • 72414 . 60t)00

1. O00OO ! l, 00000 1, (_000

1 0
2 o. 60000 0
3 .80000 0. 38462
4 . _8235 .60000
5 .92308 .72414
6 .94595 .80000
7 .96000 .84906
8 .96923 .88235
9 .97561 .90588

10 .98020 .92308
1. 00000 1. O000O

0
O. 15294 O

• 28000 O. 13274
• 38462 .24615
• 47059 .342'28

1. OOO00 1. 00000

0
O. 11724

• 21951
1. 00000

o
O. 10497
l. oo0o0

0
1. O000O .........
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FLOW AND FORCE EQUATIONS FOR A BODY REVOLVING IN A FLUID

TABLE VI

INERTIA COEFFICIENTS L k/°, k'b, k', FOR ELLIPSOIDS IN ROTATION

(For outer surface of a b c)

[Defined in eq. (77)]

a/c

1

2
3

4
5

6
7

8
9

10

1
2

3
4

5

6
7

8
9

10

I

1

k'= = Ora'=

8 0 10 ]
........ i

O. 3386
• 3834

.4061

.4194

.4275

.4326

• 4362
.4389

.4409
• 4500

O. 8359

• 9081
• 9519

• 9803
.9995

1.013
1. 023

1. 030
1. 067

I. 323
I. 408

1. 468
1. 505

1. 533
1, 555

1. 571
1. 654

1. 793

1. 885
1. 950

1.999
2. 035

Z064
Z 215

2. 251
2. 347

2.418
2.473

2. 516
2. 759

2. 701

2. 799
2. 875

2. 935
3.291

3.145

3.245 3. 585

3. 324 3. 686
3. 816 4. 336

4. 022

4.852

0

0.2394 0.3386
.4655 .7082

.6078 .9745

.6998 1.167

.7622 1.3(O

.8066 1.417

.8393 1.501

.8641 1.567

.8834 1.622

1. 0000 2,1_0

9
0. 2394 0

.4655 0.05985

• 6078 .1452
.6_38 .2150

• 7622 .2680
.8066 .3079

.8393 .3385

.8641 .36T2
• 8834 .3810

1.0000 .5000

k%=Ilm%

0. 8359

1. 191 1. 323
1.466 1.662

1.683 1.941

1. 857 Z 174
1.999 2. 370
2. 115 Z 536

2. 213 2. 679

3.000 4.000

1. 793

2. 122
2. 403

2. 648
2. 860

3. 045
5.000

2. 251
Z 573

2. 857
3.110

3. 335
6,000

2. 701

3. 019
3. 305

3. 5d5
7.0[_

3. 145
3. 460

3. 749
8. O0O

3.585

3.900
0.0_

4.022

10.000

k'°= Im',

0

0. 02333 0
• 06393 0. 01140

• 10,31 .03348
• 1367 .05758

• 1643 .07982
• 1869 .09941

• 2054 . 1164

•3333 .2509

I For translation k=, kb, k= are g!ven in Table III.

0

O. 00640 0

• 01987 ; O. C0393
• 03541 .01268
• 05077 .02330

• 06503 .03431
• 20000 .16667

0
0. 00259

• 00858

• 01616
• 14286

0

O. 00179

.006_
• 12500

0

O. 00130
.IIiii

0
O. 10000
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TABLE VII

INERTIA COEFFICIENTS k'., k'b, k'c FOR ELLIPSOIDS IN ROTATION.

!
!
i 1 2

I

(Inner surface of a b c)

[Defined in eq. (77)]

b/c

4 5 6

k_.ffiGin'.

0. 36000 0. 64000 0. 77854 0. 85208 0. 89482

7 10

0.93941
I

0.92164} 0.95181 0,96079 I. 00000

k'b=Hm'_

[
2
3
4
5
6
7
8
9

10

5
6

0. 360(D

.64000
• 77854
• 85208
• 89482
• 9216O
• 93941
.95181
• 96079

I. O0(X_

Same for all values of b_c.

o

• 89482
• 92160
• 93941
• 95181

0

o._
152438
•64{(}0
•7209@
•77854
•82062
•85208
I,00000

0
O. 07840

• 22145
• 36000
• 47563
• 56764
• 646_
• 69699

1.00_0

k', = Ira',

0
o.o4818

• 14793

•52438
1.00000

o
O.03252

• 10518
• 19202
• 27910

0
o. 02339

.07840
• 14703

0
O.01762 0
• 06059 O.01375
• 11716 .04818

I. oo_o I. o(x}oo

o
o. O1102
1.00_0

0

L 00000 ]........
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TABLE VIII

INERTIA VALUES FOR LIMITING FORMS OF ELLIPSOIDS a>b>c

"INERTIA COEFFICIENTS FOR TRANSLATION AN'D ROTATION

aD ! Shape k. kb k, k'. k_b k%

c=O

Circular disk .................... 0 0 _ _ ® 0
+ Elliptical disk ................... 0 _ 0u

¢o Long rectangle .................. 0 0 _ _ _ 0

t

I+

b>c>O

Oblate spneroid e _l-c/a ...... I --aae(ei4-1) Z'c sin=re --_cTZ--asin:le _e_-)[_-_(2-:ei)_0-&_o)i I ]

E lipso d .................... I ................................................................... i ..............................

Elliptical cylinder ............... 0 c/b b/c I (b_--c_)2 b/c c/b [

I ! I _c _,+c_ I I
c=b

1 Sohere I _ _i I _i 0 0 i 0

- "......................... l+C l+e 2e i

_+ I J°g'l-_e--2e J°g'l-e-V--_ 0 e_(_o--ao)I
Prolate spheroid e_=l--c2/a: I _ - _ _- _,o -,

log,__e--1 Ze_ log*_--2* 1_ _ - [

Roundcylinde.................. [ O 1 J 1 0 1 I l

APPARENT MASSES AND MOMENTS OF INERTIA WHEN c=0

a/b , Shape : kom kbm

__! ............
I

[ Circular disk .................... 0 01

1+ _ Elliptical disk ................... 0 [i 0
i

Long rectangle a=_ ............ : 0 l 0
i l

R .R_

'YO-Yo= --1 +e2--_/l-e: s[n-tc.

* Per unit length of model.

k ,m k'aA k%B i k',Ci

!Z-16

paa _-_pa_

4 , !4xp ab_(a_--M) 14ra aZM(a2-b;) i 0

_'Pb 2" i t*tPb ** ] 7rob** I 0

3 3 1--e_. l+e

a0--ao=--2+_--_ c* i°g'IZ-e"
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TABLE IX

LIFT, DRAG, AND MOMENT ON ENDLESS ELLIPTIC CYLINDER

[Width 8 inches, thickness 2 inches, air speed 40 miles per hour]

i },foment about long

Lift Drag axis pound foot per

Angle foot run

of at.

tack a,*

degrees Pound per f_t

run

--8 --2. 30 0. 160

--6 --1.94 .139
--4 --1.42 .122

--3 --l. ll .lift
--2 --.70 .111

--I --.40 .I08
0 0 .106

-I-1 +. 41 .108

2 .80 .111
3 I. 13 .116

4 1.44 .123
6 1.90 .140

-{-8 +2. 16 .165

Theoreti-

Expert- eel
mental N= 1.3392

ai_ 2_

--0. 335 --0, 3691

-. 254 -, 2784
--. 170 --. I864

-. 127 --. 1400
--. 084 --. 0934

--. 042 -. 0467
0 0

-[-. 044 -{-. 0467

.085 ,0934
• 129 .1400

• 171 .1864
• 249 . '2784

_,325 +. 369t

*As the te_t angles a were in part fractional, all measuxements in Table IX are faired from the original grapes of lift, drag, and moment versu_
a, in fig. l&

TABLE X

LIFT, DRAG, AND MOMENT ON ENDLESS THIN FLAT PLATE

[Width 5 inches, air speed 40 miles per hour]

}.foment about long
axis pound foot

per foot run i

.... [:
I

l

, Lift Drag

Angle I

of at- I

[ tack a, I
degrees l Experi-

Pound per foot run mental
i

l

--6 --. 980

--5 --. 827
--4 --. 614

--3 --.471
--2 --. 315

--1 --. 157
0 0

+t +. 155
2 .311

3 •471
4 .639

5 .831

6 1.01S
8 l. 346

10 1.638

12 1. 504
14 I. 582

18 I. 581

-{-18 _ -}-1.530

O. 190

• 112

.0_16
• 0596

• 0464
• 0360

• 0324
• 0312

• O328
• 0360

• 0472

.0648
• 090,0

.124

.206

.291

• 360
• 422

• 4_0

• 542

Theoreti-

cal

N=0.5581
sin 2a I

J

--0.107 --0.1538
--.097 --. 1160

--.083 --, 0984

--. _64 --, 0777
--. 050 --, 0583

--. 032 --. 0389
--. 016 --, 0195
0 0

_.017 +.0195

• 033 ,0389
• 050 .0583

• 066 .0777
• 085 ' ,0984

.098 .1160

• 107 ,1538

• 084 _. 1009
.074

• 059
.055

+. O46
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TABLE XI

LIFT, DRAG, AND MOMENT ON THIN ELLIPTIC WING

[Length 30 inches, width 5 inches, air speed 40 miles per hour]

Lift _ Drag

Angle I
of at- .
tack a I

degrees_ Pounds

--2.415 0.426--1.835 .265

--4 --l.__. .169--3 .138
-2 -.567 .116
--1 --.294 .105

.103
• 1(_

0 +. 005

+i .3C3
.590 .118
.890 .136

1.195 .1681.861
8 2.474

.2_5

10 2.865 .42_
12 2.958 [696
14 2.892 .798
16 2. 859 .897
18 2. 769 •974

+m +_ 72# 1. o65

Moment about long
axis, pound foot

: Theoreti-
ExI_ri- ] cal
mental L=0.89_

sin 2a i

--0.173 I --0.2471
--. 154 --. 1863
--.109 --.1247
--.082 --.0937 [

--. 053 --. (_25 I

6.031 --. 0_130 !

+.030 +.031_
.0_. .0625
.084 .0937
• ]11 .1247
,156 .1863
• 165 .2471
.]34 +.30_
• 109

N
+. 095

TABLE XlI

MOMENT ON PROLATE SPHEROID 1

[ Length 24 inches, diameter 6 inches, through-air speed 40 feet per second]

I
Anglo Measured !
of at- on bal-

tack a, ance
degrees

Recti-
linear

motion

--2O
--I0
--4
0

+I0
+2O

Moment about minor axis,pound foot

Found by pressure
integration

--0.179
--. 106
--. 045
0

+. 106
+. 179

Recti- Curvi-
linear linear

motion motion

--0. 207 --0. 157
--• 122 --. 078
--. 0,52 --. 018
0 +. 021

+.122 .127
+, 207 . +. 177

I

I Data taken from Reference 3,

Theoreti-
cal

N= 0.388 i

sin 2a [

--0.249 ,
--.133 '
--.054

+_:133249
I
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